Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol Methods ; 325: 114884, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38218417

RESUMO

HIV-1 based lentiviral viruses are considered powerful and versatile gene therapy vectors to deliver therapeutic genes to patients with hereditary or acquired diseases. These vectors can efficiently transduce a variety of cell types when dividing or non-dividing to provide permanent delivery and long-term gene expression. Demand for scalable manufacturing protocols able to generate enough high titre vector for widespread use of this technology is increasing and considerable efforts to improve vector production cost-effectively, is ongoing. Current methods for LV production mainly use transient transfection of producer cell lines. Cells can be grown at scale, either in 2D relying on culturing producer cells in multi-tray flask cell culture factories or in roller bottles or can be adapted to grow in 3D suspensions in large batch fermenters. This suits rapid production and testing of new vector constructs pre-clinically for their efficacy, particle titre and safety. In this study, we sought to improve lentiviral titre over time by testing two alternative commercially available transfection reagents Fugene® 6 and Genejuice® with the commonly used polycation, polyethyleneimine. Our aim was to identify less cytotoxic transfection reagents that could be used to generate LV particles at high titre past the often used 72 h period when vector is usually collected before producer cell death is caused due to post transfection cytotoxicity. We show that LV could be produced in extended culture using Genejuice® and even by transfected cells in glass flasks in suspension. Because this delivery agent is less toxic to 293 T producer cells, following optimisation of transfection we found that LV can be harvested for more than 10 days at high titre. Using our protocol, titres of 109 TU/ml and 108 TU/ml were routinely reached via traditional monolayer conditions or suspension cultures, respectively. We propose, this simple change in vector production enables large volumes of high titre vector to be produced, cost effectively for non-clinical in vivo and in vitro applications or for more stringent downstream clinical grade vector purification.


Assuntos
Vetores Genéticos , Lentivirus , Humanos , Lentivirus/genética , Células HEK293 , Transfecção , Técnicas de Cultura de Células/métodos
2.
Mol Ther Methods Clin Dev ; 31: 101127, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37920237

RESUMO

Mucopolysaccharidosis type II (MPSII) is a pediatric lysosomal storage disease caused by deficiencies in the IDS (iduronate-2-sulfatase) gene resulting in accumulation of glycosaminoglycans, multisystem disease, and profound neurodegeneration in severe forms. Although enzyme replacement therapy is available for somatic forms of disease, the inability of native IDS to pass the blood-brain barrier renders it ineffective for the brain. We previously demonstrated the short-term efficacy of a brain-targeted hematopoietic stem cell gene therapy approach to treat MPSII mice using lentiviral IDS fused to the blood-brain-barrier-crossing peptide ApoEII (IDS.ApoEII) in comparison with a lentivirus expressing native IDS and an unmanipulated bone marrow transplant. Here we evaluated the longevity of disease correction for 12-16 months following treatment. We observed sustained IDS enzyme activity in organs of long-term IDS.ApoEII-treated MPSII mice, similar to those analyzed 6 months post-treatment, with continued clearance of storage material in the brain and peripheral organs, maintained correction of astrogliosis, microgliosis, and correction of altered cytokines and chemokines. IDS.ApoEII also significantly reduced retinal atrophy, characteristic of MPSII. Overall, IDS.ApoEII resulted in systemic prevention of the MPSII phenotype, with no observed toxicity following treatment. This provides evidence of the sustained efficacy and safety of this treatment ahead of a recently opened clinical trial.

3.
Hum Gene Ther ; 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37212263

RESUMO

Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disease caused by a mutation in the IDS gene, resulting in deficiency of the enzyme iduronate-2-sulfatase (IDS) causing heparan sulfate (HS) and dermatan sulfate (DS) accumulation in all cells. This leads to skeletal and cardiorespiratory disease with severe neurodegeneration in two thirds of sufferers. Enzyme replacement therapy is ineffective at treating neurological disease, as intravenously delivered IDS is unable to cross the blood-brain barrier (BBB). Hematopoietic stem cell transplant is also unsuccessful, presumably due to insufficient IDS enzyme production from transplanted cells engrafting in the brain. We used two different peptide sequences (rabies virus glycoprotein [RVG] and gh625), both previously published as BBB-crossing peptides, fused to IDS and delivered via hematopoietic stem cell gene therapy (HSCGT). HSCGT with LV.IDS.RVG and LV.IDS.gh625 was compared with LV.IDS.ApoEII and LV.IDS in MPS II mice at 6 months post-transplant. Levels of IDS enzyme activity in the brain and peripheral tissues were lower in LV.IDS.RVG- and LV.IDS.gh625-treated mice than in LV.IDS.ApoEII- and LV.IDS-treated mice, despite comparable vector copy numbers. Microgliosis, astrocytosis, and lysosomal swelling were partially normalized in MPS II mice treated with LV.IDS.RVG and LV.IDS.gh625. Skeletal thickening was normalized by both treatments to wild-type levels. Although reductions in skeletal abnormalities and neuropathology are encouraging, given the low levels of enzyme activity compared with control tissue from LV.IDS- and LV.IDS.ApoEII-transplanted mice, the RVG and gh625 peptides are unlikely to be ideal candidates for HSCGT in MPS II and are inferior to the ApoEII peptide that we have previously demonstrated to be more effective at correcting MPS II disease than IDS alone.

4.
Neuro Oncol ; 22(9): 1289-1301, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32227096

RESUMO

BACKGROUND: Glioblastoma (GBM) has been extensively researched over the last few decades, yet despite aggressive multimodal treatment, recurrence is inevitable and second-line treatment options are limited. Here, we demonstrate how high-throughput screening (HTS) in multicellular spheroids can generate physiologically relevant patient chemosensitivity data using patient-derived cells in a rapid and cost-effective manner. Our HTS system identified actinomycin D (ACTD) to be highly cytotoxic over a panel of 12 patient-derived glioma stemlike cell (GSC) lines. ACTD is an antineoplastic antibiotic used in the treatment of childhood cancers. Here, we validate ACTD as a potential repurposed therapeutic for GBM in 3-dimensional GSC cultures and patient-derived xenograft models of recurrent glioblastoma. METHODS: Twelve patient-derived GSC lines were screened at 10 µM, as multicellular spheroids, in a 384-well serum-free assay with 133 FDA-approved compounds. GSCs were then treated in vitro with ACTD at established half-maximal inhibitory concentrations (IC50). Downregulation of sex determining region Y-box 2 (Sox2), a stem cell transcription factor, was investigated via western blot and through immunohistological assessment of murine brain tissue. RESULTS: Treatment with ACTD was shown to significantly reduce tumor growth in 2 recurrent GBM patient-derived models and significantly increased survival. ACTD is also shown to specifically downregulate the expression of Sox2 both in vitro and in vivo. CONCLUSION: These findings indicate that, as predicted by our HTS, ACTD could deplete the cancer stem cell population within the tumor mass, ultimately leading to a delay in tumor progression. KEY POINTS: 1. High-throughput chemosensitivity data demonstrated the broad efficacy of actinomycin D, which was validated in 3 preclinical models of glioblastoma.2. Actinomycin D downregulated Sox2 in vitro and in vivo, indicating that this agent could target the stem cell population of GBM tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Animais , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Criança , Dactinomicina/farmacologia , Glioblastoma/tratamento farmacológico , Humanos , Camundongos , Células-Tronco Neoplásicas , Fatores de Transcrição SOXB1/genética
5.
EMBO Mol Med ; 12(3): e11185, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32057196

RESUMO

Mucopolysaccharidosis IIIA is a neuronopathic lysosomal storage disease, characterised by heparan sulphate and other substrates accumulating in the brain. Patients develop behavioural disturbances and cognitive decline, a possible consequence of neuroinflammation and abnormal substrate accumulation. Interleukin (IL)-1ß and interleukin-1 receptor antagonist (IL-1Ra) expression were significantly increased in both murine models and human MPSIII patients. We identified pathogenic mechanisms of inflammasome activation, including that disease-specific 2-O-sulphated heparan sulphate was essential for priming an IL-1ß response via the Toll-like receptor 4 complex. However, mucopolysaccharidosis IIIA primary and secondary storage substrates, such as amyloid beta, were both required to activate the NLRP3 inflammasome and initiate IL-1ß secretion. IL-1 blockade in mucopolysaccharidosis IIIA mice using IL-1 receptor type 1 knockout or haematopoietic stem cell gene therapy over-expressing IL-1Ra reduced gliosis and completely prevented behavioural phenotypes. In conclusion, we demonstrate that IL-1 drives neuroinflammation, behavioural abnormality and cognitive decline in mucopolysaccharidosis IIIA, highlighting haematopoietic stem cell gene therapy treatment with IL-1Ra as a potential neuronopathic lysosomal disease treatment.


Assuntos
Cognição , Terapia Genética , Células-Tronco Hematopoéticas , Proteína Antagonista do Receptor de Interleucina 1 , Mucopolissacaridose III/terapia , Adolescente , Peptídeos beta-Amiloides , Animais , Criança , Pré-Escolar , Feminino , Humanos , Inflamassomos/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/genética , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
6.
Mol Ther Methods Clin Dev ; 13: 399-413, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31044143

RESUMO

Hematopoietic stem cell gene therapy is a promising therapeutic strategy for the treatment of neurological disorders, since transplanted gene-corrected cells can traffic to the brain, bypassing the blood-brain barrier, to deliver therapeutic protein to the CNS. We have developed this approach for the treatment of Mucopolysaccharidosis type IIIA (MPSIIIA), a devastating lysosomal storage disease that causes progressive cognitive decline, leading to death in early adulthood. In a previous pre-clinical proof-of-concept study, we demonstrated neurological correction of MPSIIIA utilizing hematopoietic stem cell gene therapy via a lentiviral vector encoding the SGSH gene. Prior to moving to clinical trial, we have undertaken further studies to evaluate the efficiency of gene transfer into human cells and also safety studies of biodistribution and genotoxicity. Here, we have optimized hCD34+ cell transduction with clinical grade SGSH vector to provide improved pharmacodynamics and cell viability and validated effective scale-up and cryopreservation to generate an investigational medicinal product. Utilizing a humanized NSG mouse model, we demonstrate effective engraftment and biodistribution, with no vector shedding or transmission to germline cells. SGSH vector genotoxicity assessment demonstrated low transformation potential, comparable to other lentiviral vectors in the clinic. This data establishes pre-clinical safety and efficacy of HSCGT for MPSIIIA.

7.
Brain ; 141(1): 99-116, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29186350

RESUMO

Mucopolysaccharidosis IIIB is a paediatric lysosomal storage disease caused by deficiency of the enzyme α-N-acetylglucosaminidase (NAGLU), involved in the degradation of the glycosaminoglycan heparan sulphate. Absence of NAGLU leads to accumulation of partially degraded heparan sulphate within lysosomes and the extracellular matrix, giving rise to severe CNS degeneration with progressive cognitive impairment and behavioural problems. There are no therapies. Haematopoietic stem cell transplant shows great efficacy in the related disease mucopolysaccharidosis I, where donor-derived monocytes can transmigrate into the brain following bone marrow engraftment, secrete the missing enzyme and cross-correct neighbouring cells. However, little neurological correction is achieved in patients with mucopolysaccharidosis IIIB. We have therefore developed an ex vivo haematopoietic stem cell gene therapy approach in a mouse model of mucopolysaccharidosis IIIB, using a high-titre lentiviral vector and the myeloid-specific CD11b promoter, driving the expression of NAGLU (LV.NAGLU). To understand the mechanism of correction we also compared this with a poorly secreted version of NAGLU containing a C-terminal fusion to IGFII (LV.NAGLU-IGFII). Mucopolysaccharidosis IIIB haematopoietic stem cells were transduced with vector, transplanted into myeloablated mucopolysaccharidosis IIIB mice and compared at 8 months of age with mice receiving a wild-type transplant. As the disease is characterized by increased inflammation, we also tested the anti-inflammatory steroidal agent prednisolone alone, or in combination with LV.NAGLU, to understand the importance of inflammation on behaviour. NAGLU enzyme was substantially increased in the brain of LV.NAGLU and LV.NAGLU-IGFII-treated mice, with little expression in wild-type bone marrow transplanted mice. LV.NAGLU treatment led to behavioural correction, normalization of heparan sulphate and sulphation patterning, reduced inflammatory cytokine expression and correction of astrocytosis, microgliosis and lysosomal compartment size throughout the brain. The addition of prednisolone improved inflammatory aspects further. Substantial correction of lysosomal storage in neurons and astrocytes was also achieved in LV.NAGLU-IGFII-treated mice, despite limited enzyme secretion from engrafted macrophages in the brain. Interestingly both wild-type bone marrow transplant and prednisolone treatment alone corrected behaviour, despite having little effect on brain neuropathology. This was attributed to a decrease in peripheral inflammatory cytokines. Here we show significant neurological disease correction is achieved using haematopoietic stem cell gene therapy, suggesting this therapy alone or in combination with anti-inflammatories may improve neurological function in patients.


Assuntos
Encefalite/etiologia , Encefalite/terapia , Terapia Genética/métodos , Macrófagos/enzimologia , Mucopolissacaridose III , Células-Tronco/fisiologia , Animais , Encéfalo/enzimologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Gliose/terapia , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo , Humanos , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mucopolissacaridose III/complicações , Mucopolissacaridose III/genética , Mucopolissacaridose III/patologia , Mucopolissacaridose III/terapia , Prednisolona/uso terapêutico , Baço/enzimologia , Sulfatases/genética , Sulfatases/metabolismo
8.
Hum Gene Ther ; 25(1): 50-62, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24125177

RESUMO

The ability to deliver a large transgene efficiently to photoreceptors using viral vectors remains problematic and yet is critical for the future therapy of inherited retinal diseases such as Stargardt's and Usher's 1B. Herein, we examine the ocular tropism of a HIV-1-based lentivirus vector pseudotyped with Venezuelan equine encephalitis virus-derived glycoprotein (VEEV-G) after intraocular delivery to the posterior and anterior chambers of C57BL/6 wild-type mice. Reporter gene (EGFP) expression was evaluated using in vivo fluorescence imaging followed by postmortem immunohistochemistry and retinal function assessed by electroretinography. Intracameral administration of VEEV-G and vesicular stomatitis virus glycoprotein (VSV-G)-pseudotyped vectors resulted in robust transgene expression in the corneal endothelium and trabecular meshwork. After subretinal administration, onset of transgene expression was observed in the retinal pigment epithelium (RPE) 1 day postinjection with both VEEV-G and control VSV-G pseudotypes, but no significant photoreceptor transduction was apparent. Substantial degeneration of the outer nuclear layer was observed with VEEV-G-pseudotyped vector, which corresponded to ablation of retinal function. Subretinal administration of VSV-G was observed to result in significant suppression of electrophysiological function compared with buffer-injected and uninjected control eyes. Suppression of the c-wave amplitude, in addition to reduced RPE65 expression, indicated potential RPE dysfunction. Ex vivo tropism of VSV-G was assessed using organotypic culture of explanted retina harvested from wild-type mice and human patients undergoing retinal detachment surgery to examine the prevention of transduction by physical barriers and species differences in tropism.


Assuntos
Vírus da Encefalite Equina Venezuelana/genética , Vetores Genéticos/genética , Glicoproteínas/genética , Lentivirus/genética , Transdução Genética , Vírus da Estomatite Vesicular Indiana/genética , Proteínas do Envelope Viral/genética , Animais , Linhagem Celular , Endotélio Corneano/metabolismo , Expressão Gênica , Genes Reporter , Vetores Genéticos/administração & dosagem , Vetores Genéticos/toxicidade , Humanos , Camundongos , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Retina/fisiopatologia , Retina/transplante , Malha Trabecular/metabolismo , Transgenes
9.
Mol Ther ; 21(10): 1862-75, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23799534

RESUMO

Huntington's disease (HD) is a devastating neurodegenerative disorder caused by abnormal polyglutamine expansion in the huntingtin protein (Exp-Htt). Currently, there are no effective treatments for HD. We used bidirectional lentiviral transfer vectors to generate in vitro and in vivo models of HD and to test the therapeutic potential of vascular endothelial growth factor 165 (VEGF165). Lentiviral-mediated expression of Exp-Htt caused cell death and aggregate formation in human neuroblastoma SH-SY5Y and rat primary striatal cultures. Lentiviral-mediated VEGF165 expression was found to be neuroprotective in both of these models. Unilateral stereotaxic vector delivery of Exp-Htt vector in adult rat striatum led to progressive inclusion formation and striatal neuron loss at 10 weeks post-transduction. Coinjection of a lower dose VEGF165 significantly attenuated DARPP-32(+) neuronal loss, enhanced NeuN staining and reduced Exp-Htt aggregation. A tenfold higher dose VEGF165 led to overt neuronal toxicity marked by tissue damage, neovascularization, extensive astrogliosis, vascular leakage, chronic inflammation and distal neuronal loss. No overt behavioral phenotype was observed in these animals. Expression of VEGF165 at this higher dose in the brain of wild-type rats led to early mortality with global neuronal loss. This report raises important safety concerns about unregulated VEGF165 CNS applications.


Assuntos
Corpo Estriado/patologia , Terapia Genética , Doença de Huntington/patologia , Degeneração Neural/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Morte Celular , Linhagem Celular Tumoral , Células Cultivadas , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Vetores Genéticos , Células HEK293 , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Lentivirus/genética , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores , Ratos , Ratos Sprague-Dawley , Transdução Genética
10.
Arterioscler Thromb Vasc Biol ; 32(12): 2956-65, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23065825

RESUMO

OBJECTIVE: The receptor-like protein-tyrosine phosphatase (PTP) CD148 and the nontransmembrane PTP1-B have been shown to be net positive regulators of Src family kinases in platelets. In the present study, we compared the relative contributions of these PTPs in platelet activation by the major glycoprotein, glycoprotein VI, α(IIb)ß(3), and C-type lectin-like receptor 2 (CLEC-2). METHODS AND RESULTS: PTP-1B-deficient mouse platelets responded normally to the glycoprotein VI-specific agonist collagen-related peptide and antibody-mediated CLEC-2 activation. However, they exhibited a marginal reduction in α(IIb)ß(3)-mediated Src family kinase activation and tyrosine phosphorylation. In contrast, CD148-deficient platelets exhibited a dramatic reduction in activation by glycoprotein VI and α(IIb)ß(3) and a marginal reduction in response to activation by CLEC-2, which was further enhanced in the absence of PTP-1B. These defects were associated with reduced activation of Src family kinase and spleen tyrosine kinase, suggesting a causal relationship. Under arteriolar flow conditions, there was defective aggregate formation in the absence of PTP-1B and, to a greater extent, CD148 and a severe abrogation of both adhesion and aggregation in the absence of both PTPs. CONCLUSIONS: Findings from this study demonstrate that CD148 plays a dominant role in activating Src family kinases in platelets relative to PTP-1B. Both PTPs are required for optimal platelet activation and aggregate formation under high arterial shear rates.


Assuntos
Plaquetas/fisiologia , Ativação Plaquetária/fisiologia , Agregação Plaquetária/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/fisiologia , Animais , Plaquetas/citologia , Adesão Celular/fisiologia , Fibrinogênio , Glicoproteínas/fisiologia , Técnicas In Vitro , Lectinas Tipo C/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Proteína Tirosina Fosfatase não Receptora Tipo 1/deficiência , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/deficiência , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/fisiologia , Transdução de Sinais/fisiologia , Quinases da Família src/fisiologia
11.
Blood ; 113(20): 4942-54, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19246339

RESUMO

Platelets play a fundamental role in hemostasis and thrombosis. They are also involved in pathologic conditions resulting from blocked blood vessels, including myocardial infarction and ischemic stroke. Platelet adhesion, activation, and aggregation at sites of vascular injury are regulated by a diverse repertoire of tyrosine kinase-linked and G protein-coupled receptors. Src family kinases (SFKs) play a central role in initiating and propagating signaling from several platelet surface receptors; however, the underlying mechanism of how SFK activity is regulated in platelets remains unclear. CD148 is the only receptor-like protein tyrosine phosphatase identified in platelets to date. In the present study, we show that mutant mice lacking CD148 exhibited a bleeding tendency and defective arterial thrombosis. Basal SFK activity was found to be markedly reduced in CD148-deficient platelets, resulting in a global hyporesponsiveness to agonists that signal through SFKs, including collagen and fibrinogen. G protein-coupled receptor responses to thrombin and other agonists were also marginally reduced. These results highlight CD148 as a global regulator of platelet activation and a novel antithrombotic drug target.


Assuntos
Ativação Plaquetária/genética , Trombose/genética , Animais , Antígenos de Superfície/metabolismo , Plaquetas/metabolismo , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Fibrinogênio/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Agregação Plaquetária/efeitos dos fármacos , Glicoproteínas da Membrana de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/fisiologia , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/fisiologia , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/fisiologia , Receptores de IgG/genética , Transdução de Sinais/imunologia
12.
Arthritis Rheum ; 58(3): 869-74, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18311812

RESUMO

OBJECTIVE: To investigate whether single-nucleotide polymorphisms (SNPs) within the genes PRF1, GZMB, UNC13D, and Rab27a, which are involved in natural killer cell dysfunction and known to contribute to the risk of hemophagocytic lymphohistiocytosis (HLH), confer an increased risk of susceptibility to systemic-onset juvenile idiopathic arthritis (JIA). METHODS: Four SNPs across the PRF1 gene locus, 5 for GZMB, 7 for UNC13D, and 11 for Rab27a were investigated using MassArray genotyping in 133 UK Caucasian patients with systemic-onset JIA and 384 ethnically matched unrelated control subjects. Additional control genotypes were accessed from the data generated by the Wellcome Trust Case Control Consortium. RESULTS: No significant association was found between any SNP within the 4 selected loci and systemic-onset JIA, by either single-point or haplotype analysis. CONCLUSION: The results of this study demonstrate that genes involved in HLH do not confer a significant risk of association with systemic-onset JIA.


Assuntos
Artrite Juvenil/genética , Predisposição Genética para Doença/genética , Granzimas/genética , Linfo-Histiocitose Hemofagocítica/genética , Proteínas de Membrana/genética , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas rab de Ligação ao GTP/genética , Estudos de Casos e Controles , Genótipo , Haplótipos , Humanos , Ativação de Macrófagos , Perforina , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Proteínas rab27 de Ligação ao GTP
13.
J Biol Chem ; 281(40): 29641-51, 2006 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-16893895

RESUMO

Macrophage migration inhibitory factor (MIF) is a pro-inflammatory mediator with the ability to induce various immunomodulatory responses and override glucocorticoid-driven immunosuppression. Some of these functions have been linked to the unusual enzymatic properties of the protein, namely tautomerase and oxidoreductase activities. However, there are conflicting reports regarding the functional role of these enzymatic properties in normal physiological homeostasis and disease progression. Therefore, we have produced a highly pure, virtually endotoxin-free recombinant MIF preparation and fully characterized this using a variety of biochemical and biophysical approaches. The recombinant protein, with demonstrable enzymatic activity, was then used to systematically examine the biological activity of MIF. Surprisingly, treatment with MIF alone failed to induce cytokine expression, with the exception of IL-8. However, co-treatment of lipopolysaccharide (LPS) in conjunction with MIF produced synergistic secretion of tumor necrosis factor-alpha, interleukin (IL)-1, and IL-8 compared with LPS alone. The potentiating effect of MIF was seen at physiologically relevant concentrations. These data suggest that MIF has no conventional cytokine activity but, rather, acts to modulate and amplify the response to LPS.


Assuntos
Mediadores da Inflamação/isolamento & purificação , Mediadores da Inflamação/fisiologia , Fatores Inibidores da Migração de Macrófagos/isolamento & purificação , Fatores Inibidores da Migração de Macrófagos/fisiologia , Animais , Linhagem Celular , Movimento Celular/imunologia , Sobrevivência Celular/imunologia , Citocinas/biossíntese , Citocinas/genética , Citocinas/isolamento & purificação , Citocinas/fisiologia , Sinergismo Farmacológico , Granulócitos/citologia , Granulócitos/imunologia , Humanos , Mediadores da Inflamação/química , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Lipopolissacarídeos/farmacologia , Fatores Inibidores da Migração de Macrófagos/genética , Ratos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...